Processing ANN Traffic Predictions for RAN Energy Efficiency

Greta Vallero, Daniela Renga, Michela Meo, Marco Ajmone Marsan

Politecnico di Torino, Italy

Need for RAN Management

5,75 5,50 5,25 5,00 4,75 $10^{18} 10^{19} 10^{10} 10^{10} 10^{10} 10^{12}$

Increase of the RAN energy consumption

- Sustainability issues
- Climate change
- Growth of RAN operational cost

Need **RAN management** to reduce the RAN energy consumption, without QoS deterioration

POLITECNICO DI TORINO

*Cisco Annual Internet Report (2018-2023)

RAN Management

Microcell BSs switching according to the traffic demand

Need to know near future traffic demand:
 Machine Learning for traffic predictions

- QoS deterioration because of incorrect microcell BSs deactivation
- Not only a problem of error!

Real Forecast Error=0.027 **ρ** depends on the energy consumption per carried bit: when the **traffic is below ρ**,

 $EC_{MACRO}(T_{MACRO}+T_{\mu}) < EC_{MACRO}(T_{MACRO})+EC_{\mu}(T_{\mu})$

Need careful processing of the traffic predictions and understanding of the overall traffic pattern

MSWIM 2020 Virtual Conference

15 min traffic demand forecast

1 ANN - 4 outputs

At time t, predict traffic in the next 4 time slots (15 min long):

Taking decisions: Max based

 Max2Max: Take decision based on max estimates; decide at the hour

POLITECNICO DI TORINO Max2Max cont: Take decision in any 15 min slot

Taking decisions: Interval based

- I2I: Take decision
 based on slot by
 slot estimates;
 decides at the hour
- I2I cont: Take decision in any 15 min slot

MSWIM 2020 Virtual Conference MSWIM 19.11.2020

Taking decisions: Interval based

• **I2I Flex**: After a sleeping period an additional slot can be considered

POLITECNICO DI TORINO

Detecting descendent fronts

Catching longer term behavior and overall shape can help making decisions

Fronts are detected with averages and sliding windows of the past 2 h samples

POLITECNICO DI TORINO

MSWIM 2020 Virtual Conference

Scenario and Used Data

- Residential
- Business
- Politecnico di Milano (campus)
- Duomo (turistic)
- Industrial
- Train station
- San Siro (stadium)
- Rho Fiere (exhibitions)

POLITECNICO DI TORINO

MSWIM 2020 Virtual Conference

Choice of the ANN

- → Energy consumption slightly increases wrt benchmarks (at most by 3%)
- → Lost traffic improvement:
 - when Max based approaches w.r.t. interval based
 - when cont. is used
 - when DFD is used

Taking decision

22

Conclusion

- → RAN sustainability is a key challenge that requires the adoption of network management strategies, which use traffic demand predictions
- → ML algorithms for predicting demand for services are effective if properly processed:
 - to combine predictions over shorter time scales (15 min instead of 60 min traffic samples)
 - to detect the **overall shape** of traffic profile
- → Future works:
 - **5**G scenario: dense RAN, which uses MEC technology
 - Measure of energy consumption for ML training

POLITECNICO DI TORINO

Thank you for your attention

