DESIGN, IMPLEMENTATION AND PERFORMANCE EVALUATION OF A PUBLISH-SUBSCRIBE ARCHITECTURE FOR INTERMITTENTLY CONNECTED 802.15.4 NETWORKS

D. Battaglino, <u>Lorenzo Bracciale</u>, A.Detti, G. Bianchi, A. Bragagnini, M. Turolla, N. Blefari Melazzi

Technology: mobile terminals w/ IEEE 802.15.4

- Why IEEE 802.15.4?
 - Low energy consumpion against Bluetooth and WiFi
 - Very small size: <u>embeddable (~5mm X 5mm)</u>

- Telecom Italia integrated SD and SIM card with IEEE 802.15.4/ZigBee devices
 - ZSIM and ZSD

Very low resources (128KB Flash, 4/8KB Ram, 250Kbps max throughput, 1mW transmit power)

Why short range communications in proximity based services?

Scenario: university campus

CAMPUS++: a topic-based pub/sub architecture for IEEE 802.15.4 DTN

- Intermittently connected networks → Delay Tolerant Networks (DTN)
 - Support communications also between users directly connected to each other (store carry and forward)

Topic-based publish/subscribe

- Users interested of a topic subscribe it
- A <u>data sample</u> published on a given topic will be delivered to the subscribers of that topic
- Publishers and Subscribers are loosely coupled

CAMPUS++ service framework

Service framework

- User's PDA equipped with IEEE 802.15.4-capable SD cards
- The Campus++ application allows to see the topic list which users can subscribe
- Exchange of messages called "Data Samples" regarding specific topics
- Once a topic is subscribed, data samples published of that topic are automatically received

Data sample delivery

- Spray and Wait[2] DTN routing scheme.
 - Data samples when published are replicated on R different nodes (including the source) that are the "carriers" of the data (SPRAY PHASE)
 - Wait untill one of the replicas reach the target(s) (WAIT PHASE)

Delay analysis

- The more the replicas in the system, the minor the average time to distribute a data-sample to all the subscribers
 - We call this time mean delivery delay
 - ...but we are memory constrained
- How to decide the right number of replicas "R"?
 - 1. Should we occupy 100% of the memory of the system?
 - 2. Should we advantage topics with a greater popularity (i.e. number of subscriptions)?
- We resort to a two-step analysis and optimization:
 - First we analyze the system under the hypothesis of homogenous topic popularity,
 - After we consider different popularities

¹ mean time between the generation of a data-sample and the retrieval by a subscriber node

Several topics, same popularity: simulations

■ The reason is due to the *Spray Time:* too much replicas decrease the probability to find other nodes with free memory space

Data sample delivery – Memory contraints

- Spray and Wait[2] DTN routing scheme.
 - Data samples when published are replicated on R different nodes (including the source) that are the "carriers" of the data (SPRAY PHASE)
 - Wait untill one of the replicas reach the target(s) (WAIT PHASE)

How to calculate the optimal memory utilization?

- R replicas (homogeneous)
- γ = Inter-meeting frequency
- n = Nodes in the system with (at least) one free memory slot

Delay:
$$D = \frac{H_R - 1}{(n+1)\gamma} + \frac{1}{R}$$

Random Waypoint

Simulative approach with event driven simulator:

100 nodes Random Way Point mobility model on a 500x500 m² surface Coverage range 50 m

Introducing topic popularity

- The number of subscribers can be different for each topic (topic popularity): we can impose that subscribers of the popular topics see a minor delay than subscribers of unpopular topics
- Starting from the mean delivery delay of Spray and Wait and applying Lagrange optimization a model can be derived to find an optimal number of replicas for each topic

$$R_i = C_{tot} \frac{\sqrt{S_i}}{\sqrt{S_1 + ... \sqrt{S_T}}}$$

- R_i: number of replicas of i-th topic
- C_{tot}: memory capacity of the system (previously calculated)
- S_i: subscriptions for the i-th topic

Popularity optimization

Zipf popularity distribution with parameter α

Optimizations effectiveness

zipf, α =1.8

Key issues of the system

- **Replication Control**: R replicas of a data-sample have to share a distributed storage space. Tradeoff between mean delivery delay and storage space taking in account the popularity of different topics.
- Data Obsolescence: Oldest data sample have to be removed from the system when new data-samples are published. Newer and older datasamples have to be distinguished
- Distribution of Control Data: control information (e.g. Topic list, number of subscribers per topic, etc...) must be distributed to all nodes of the system
- Ad-Hoc Mode: the IEEE 802.15.4 standard does not provide any kind of ad-hoc mode. A PAN coordinator must be present to control the WPAN

System Architecture

Components:

- Mobile users devices, publishers and subscribers of data-samples
- Way-servers, publisher of control data (Built-in topic), provide user nodes with a loose clock reference, inform the Admin. Server about system parameters (number of users and subscriptions per-topic received)
- Admin. Server, provides the wayservers the set of control data (topic list, overall system memory, clock reference)

Control Data are distributed using a special topic called "**built-in topic**" published *only by Way-servers* and subscribed by *all user nodes*. The distribution of built-in topic data samples is **epidemic** (the number of copies to distribute is not fixed)

Data exchange: MAC and 6LoWPAN

Direct communications between users: IEEE 802.15.4 +
6LoWPAN stack developed in our last project

Ad-hoc mode:

- Use of unique 64-bit extended MAC addresses of IEEE 802.15.4 devices
- Force all nodes to be PAN coordinator (violation of 802.15.4 standard, but...)
- The hardware (TI CC2430) allows this mode of operations
- For security reasons PAN coordinators (all nodes) do not allow the association of other 802.15.4 nodes

Implementation

- All functionalities of Campus++ implemented in the firmware of CC2430 SoC
 - Code size ~ 60 KB
- Campus++ application developed on a Windows Mobile PDA
- The Campus++ mobile application interacts with the firmware by means of a publish/ subscribe API

Conclusions and Future Work

•IEEE 802.15.4 can be exploited for delivering locationbased services

- Main contributions:
 - System design
 - Performance optimization
 - Implementation in a real testbed
- Future work
 - Future implementation: μSD + android terminals
 - Power consumptions measurements