Topology-Related Modeling and Characterization of Wireless Sensor Networks PE-WASUN'2011

Heitor S. Ramos^{1,2,4}, Daniel Guidoni¹, Eduardo F. Nakamura³, Azzedine Boukerche⁴, Alejandro C. Frery², and **Antonio A.F.** Loureiro¹

¹Depart. of Comp. Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil ²Institute of Computing, Federal University of Alagoas, Maceió, AL, Brazil ³FUCAPI, Manaus, AM, Brazil ⁴Diva Research Centre, University of Ottawa, Ottawa, ON, Canada

November 4, 2011

Introduction

- Node deployment, and the consequent induced topology, plays an important role in the design of wireless sensor networks
- Another class of WSN models assume that there are different
- For instance, suppose we have two sets of nodes: H-sensors and

Introduction

- Node deployment, and the consequent induced topology, plays an important role in the design of wireless sensor networks
- Homogeneous ad hoc networks suffer from fundamental limitations and, hence, exhibit poor network performance
- Another class of WSN models assume that there are different
- For instance, suppose we have two sets of nodes: H-sensors and

Introduction

- Node deployment, and the consequent induced topology, plays an important role in the design of wireless sensor networks
- Homogeneous ad hoc networks suffer from fundamental limitations and, hence, exhibit poor network performance
- Another class of WSN models assume that there are different sets of nodes, each one with different capabilities
- For instance, suppose we have two sets of nodes: H-sensors and L-sensors
- A homogeneous WSN becomes a particular case of a HSN
- Energy hole happens in the neighborhood of each H-sensor

- Node deployment, and the consequent induced topology, plays an important role in the design of wireless sensor networks
- Homogeneous ad hoc networks suffer from fundamental limitations and, hence, exhibit poor network performance
- Another class of WSN models assume that there are different sets of nodes, each one with different capabilities
- For instance, suppose we have two sets of nodes: H-sensors and L-sensors
- A homogeneous WSN becomes a particular case of a HSN
- Energy hole happens in the neighborhood of each H-sensor

- Node deployment, and the consequent induced topology, plays an important role in the design of wireless sensor networks
- Homogeneous ad hoc networks suffer from fundamental limitations and, hence, exhibit poor network performance
- Another class of WSN models assume that there are different sets of nodes, each one with different capabilities
- For instance, suppose we have two sets of nodes: H-sensors and L-sensors
- A homogeneous WSN becomes a particular case of a HSN

- Node deployment, and the consequent induced topology, plays an important role in the design of wireless sensor networks
- Homogeneous ad hoc networks suffer from fundamental limitations and, hence, exhibit poor network performance
- Another class of WSN models assume that there are different sets of nodes, each one with different capabilities
- For instance, suppose we have two sets of nodes: H-sensors and L-sensors
- A homogeneous WSN becomes a particular case of a HSN
- Energy hole happens in the neighborhood of each H-sensor

Stochastic Point Process

- A stochastic point process is a probability law that describes the location of a number of points in a region of the space
- The most common model used in WSN simulation is the binomial, i.e., a fixed number of n points obeys a binomial distribution on $W=[0,\ell]^2\subset\mathbb{R}^2$
- 2n independent identically distributed random variables $X_1, \ldots, X_n, Y_1, \ldots, Y_n$, obeying the uniform law on $[0, \ell]$, say $x_1, \ldots, x_n, y_1, \ldots, y_n$, and then placing the n points on coordinates $(x_i, y_i)_{1 \le i \le n}$

- A stochastic point process is a probability law that describes the location of a number of points in a region of the space
- The most common model used in WSN simulation is the binomial, i.e., a fixed number of n points obeys a binomial distribution on $W = [0, \ell]^2 \subset \mathbb{R}^2$
- 2n independent identically distributed random variables

- A stochastic point process is a probability law that describes the location of a number of points in a region of the space
- The most common model used in WSN simulation is the binomial, i.e., a fixed number of n points obeys a binomial distribution on $W = [0, \ell]^2 \subset \mathbb{R}^2$
- 2n independent identically distributed random variables $X_1, \ldots, X_n, Y_1, \ldots, Y_n$, obeying the uniform law on $[0, \ell]$, say $x_1, \ldots, x_n, y_1, \ldots, y_n$, and then placing the n points on coordinates $(x_i, y_i)_{1 \le i \le n}$

Poisson Point Process

Definition

Definition

- **1** Number of points in every compact set $A \subset W$, denoted by C(A)for "counts", follows a Poisson distribution with mean $\lambda \mu(A)$
- 2 If A_1, A_2, \ldots, A_m are disjoint subsets of W, then

Poisson Point Process

Definition

- Number of points in every compact set $A\subset W$, denoted by C(A) for "counts", follows a Poisson distribution with mean $\lambda\mu(A)$
- ② If A_1,A_2,\ldots,A_m are disjoint subsets of W, then $C(A_1),C(A_2),\ldots,C(A_m)$ are collectively independent random variables

 M^2P^2

$$\mathsf{M}^2\mathsf{P}^2(m,n,a,r_c,r_{ch},r_i)$$
 on $W\subset\mathbb{R}^2$

It is a compounded process consisting of:

- m samples of: $H(m, 2r_i)$ (H-sensors).
 - n-m samples of $\Lambda(n-m,a,h)$ (L-sensors)

 M^2P^2

$$\mathsf{M}^2\mathsf{P}^2(m,n,a,r_c,r_{ch},r_i)$$
 on $W\subset\mathbb{R}^2$

It is a compounded process consisting of:

- m samples of: $H(m, 2r_i)$ (H-sensors).
- n-m samples of $\Lambda(n-m,a,h)$ (L-sensors)

$$\mathsf{M}^2\mathsf{P}^2$$

$$\mathsf{M}^2\mathsf{P}^2(m,n,a,r_c,r_{ch},r_i)$$
 on $W\subset\mathbb{R}^2$

It is a compounded process consisting of:

- m samples of: $H(m, 2r_i)$ (H-sensors).
- n-m samples of $\Lambda(n-m,a,h)$ (L-sensors)

H-sensors Deployment Model

 $H(m, 2r_i)$

It places the maximum number of m H-sensors on a window Wrepulsed by an inhibition distance $2r_i$. This process follows the SSI (Simple Sequential Inhibition) stochastic point process

$$\Lambda(n-m,a,\mathbf{h})$$

An inhomogeneous Poisson process with intensity function defined as:

$$\lambda(x,y) = \begin{cases} a, \text{if } d((x,y),(hx_i,hy_i)) \leq r_c, 1 \leq i \leq m, \\ 1, \text{ otherwise} \end{cases}$$

where a > 1 (the attractiveness parameter), d is any distance measure, and r_c is the communication radius of the L-sensors

Examples of M^2P^2

Outcomes of ${\rm M^2P^2}$ for 300 nodes with $1,\,10,\,10$ and 15 H-sensors (in black) and attractiveness 15, 5, 15 and 15

Small-world characterization and energy hole behavior

- H-sensors have a two-channel radio
- Each sensor reports its collected data by using a minimum cost
- An error- and a collision-free MAC protocol was used to isolate its

- Small-world characterization and energy hole behavior
- H-sensors and L-sensors present same sensing capabilities (r_s) and two levels of transmission range (r_c and r_{ch}).
- H-sensors have a two-channel radio
- Each sensor reports its collected data by using a minimum cost
- An error- and a collision-free MAC protocol was used to isolate its

- Small-world characterization and energy hole behavior
- H-sensors and L-sensors present same sensing capabilities (r_s) and two levels of transmission range (r_c and r_{ch}).
- H-sensors have a two-channel radio

- An error- and a collision-free MAC protocol was used to isolate its

- Small-world characterization and energy hole behavior
- H-sensors and L-sensors present same sensing capabilities (r_s) and two levels of transmission range (r_c and r_{ch}).
- H-sensors have a two-channel radio
- Each sensor sends 1 packet/min
- Each sensor reports its collected data by using a minimum cost
- An error- and a collision-free MAC protocol was used to isolate its

- Small-world characterization and energy hole behavior
- H-sensors and L-sensors present same sensing capabilities (r_s) and two levels of transmission range (r_c and r_{ch}).
- H-sensors have a two-channel radio
- Each sensor sends 1 packet/min
- Each sensor reports its collected data by using a minimum cost path to the sink (not a fixed tree)
- An error- and a collision-free MAC protocol was used to isolate its

- Small-world characterization and energy hole behavior
- H-sensors and L-sensors present same sensing capabilities (r_s) and two levels of transmission range (r_c and r_{ch}).
- H-sensors have a two-channel radio
- Each sensor sends 1 packet/min
- Each sensor reports its collected data by using a minimum cost path to the sink (not a fixed tree)
- An error- and a collision-free MAC protocol was used to isolate its influence

Parameter	Value
sink node	1 (center-most node)
network size	$n \in \{1000, 1500, 2000\}$ nodes
communication radius (L-sensors)	50 m
communication radius (H-sensors)	$r_{ch} \in \! \{100, 300, 500\} \mathrm{m}$
number of H-sensors	$m \in \! \{1, 10, 30, 50\} \mathrm{nodes}$
deployment model parameter	$a \in \{0, 1, 5, 15, 30\}$
event duration	1000s
data rate	$1\mathrm{packet/min}$
sensing radius	$30\mathrm{m}$
sensor field	$1000\times1000\mathrm{m}^2$

- **independent** | **independent** (a = 0): binomial deployment for both L-sensors and H-sensors, also called totally independent deployment

- **independent** | **independent** (a = 0): binomial deployment for both L-sensors and H-sensors, also called totally independent deployment
- 2 independent | repulsive (a=1): binomial deployment for L-sensors and repulsive deployment for H-sensors

- strongly attractive | repulsive (a = 30): strongly attractive

- **independent** | **independent** (a = 0): binomial deployment for both L-sensors and H-sensors, also called totally independent deployment
- 2 independent | repulsive (a=1): binomial deployment for L-sensors and repulsive deployment for H-sensors
- **3** slightly attractive | repulsive (a = 5): slightly attractive deployment for L-sensors and repulsive deployment for H-sensors
- fairly attractive | repulsive (a = 15): fairly attractive deployment
- strongly attractive | repulsive (a = 30): strongly attractive

- **independent** | **independent** (a = 0): binomial deployment for both L-sensors and H-sensors, also called totally independent deployment
- 2 independent | repulsive (a=1): binomial deployment for L-sensors and repulsive deployment for H-sensors
- **3** slightly attractive | repulsive (a = 5): slightly attractive deployment for L-sensors and repulsive deployment for H-sensors
- fairly attractive | repulsive (a = 15): fairly attractive deployment for L-sensors and repulsive deployment for H-sensors
- strongly attractive | repulsive (a = 30): strongly attractive

- **independent** | **independent** (a = 0): binomial deployment for both L-sensors and H-sensors, also called totally independent deployment
- 2 independent | repulsive (a=1): binomial deployment for L-sensors and repulsive deployment for H-sensors
- **3** slightly attractive | repulsive (a = 5): slightly attractive deployment for L-sensors and repulsive deployment for H-sensors
- fairly attractive | repulsive (a = 15): fairly attractive deployment for L-sensors and repulsive deployment for H-sensors
- **5 strongly attractive** | **repulsive** (a = 30): strongly attractive deployment for L-sensors and repulsive deployment for H-sensors

of H-sensors

Coverage and Connectivity

Small World Effect

- A small world network is characterized by short path lengths as random graphs and relatively large clustering coefficient as regular lattice

Small World Effect

- A small world network is characterized by short path lengths as random graphs and relatively large clustering coefficient as regular lattice
- Good characteristics for:
 - information dissemination
 - fault tolerance

Small World Effect

- A small world network is characterized by short path lengths as random graphs and relatively large clustering coefficient as regular lattice
- Good characteristics for:
 - information dissemination

Small World Effect

- A small world network is characterized by short path lengths as random graphs and relatively large clustering coefficient as regular lattice
- Good characteristics for:
 - information dissemination
 - fault tolerance

Small World Effect

Small world characterization

Topology	\overline{CC}	$\widehat{\sigma}_{CC}$	\overline{L}	$\widehat{\sigma}_L$
slightly attractive repulsive	0.658	0.009	6.313	0.553
independent independent	0.584	0.005	8.205	0.901
homogeneous network	0.595	0.007	13.878	0.194
Erdös-Rényi random graph	0.011	0.001	2.848	0.006

1500 nodes. In the first two topologies, there are 30 H-sensors and $r_{ch} = 300$

- In general, the more central the node is the more packets it will transmit (sink in the center)
- We study some centrality metrics that appear in the theory of

- In general, the more central the node is the more packets it will transmit (sink in the center)
- We study some centrality metrics that appear in the theory of complex networks and describe the centrality in different ways.

- In general, the more central the node is the more packets it will transmit (sink in the center)
- We study some centrality metrics that appear in the theory of complex networks and describe the centrality in different ways.
- (i) Betweenness, (ii) eigenvector centrality, (iii) closeness, (iv) degree centrality, (v) Google page rank, (vi) constraints centrality, (vii) hubscore centrality, and (viii) authority centrality

- In general, the more central the node is the more packets it will transmit (sink in the center)
- We study some centrality metrics that appear in the theory of complex networks and describe the centrality in different ways.
- (i) Betweenness, (ii) eigenvector centrality, (iii) closeness, (iv) degree centrality, (v) Google page rank, (vi) constraints centrality, (vii) hubscore centrality, and (viii) authority centrality
- Betweenness appears as the metric that best describes the relay task

Evaluation of ${\rm M}^2{\rm P}^2$

Definitions

Betweenness

$$B_v = \sum_{s=1}^n \sum_{t=1}^n \frac{\sigma_{st}(v)}{\sigma_{st}},$$

Sink-Betweenness

$$SB_v = \sum_{t=1}^n \frac{\sigma_{s_k t}(v)}{\sigma_{s_k t}}.$$

Network Centrality and Transmitted Messages

Sink in the center:

Sink in a corner:

Sink randomly placed:

BET SBET EIGEN CLOSE DEGREE GPR CO

CONST HUB AUTHORITY

Network Centrality and Transmitted Messages

Sink in the center:

Sink in a corner:

Sink randomly placed:

EIGEN CLOSE DEGREE GPR

CONST

BET

SBET

HUB AUTHORITY

- ullet Window W where the process takes place
- Communication radii should be carefully specified as a function of
- Number (n) and type of sensors required for precise, lasting and
- Inhibition parameter r_i , $r_i > r_c$ (areas of influence of H-sensors
- Intensity parameter a > 1
- L-Sensors around each H-Sensor: $E(Z) = \frac{n-m}{m\left(\frac{1}{a}\left(\frac{\mu(W)}{\mu(W')}-1\right)+1\right)}$

- ullet Window W where the process takes place
- Communication radii should be carefully specified as a function of the communication channel. This distance specifies r_c and r_{ch}
- Inhibition parameter r_i , $r_i > r_c$ (areas of influence of H-sensors
- Intensity parameter a > 1
- L-Sensors around each H-Sensor: $E(Z) = \frac{n-m}{m\left(\frac{1}{a}\left(\frac{\mu(W)}{\mu(W')}-1\right)+1\right)}$

- ullet Window W where the process takes place
- Communication radii should be carefully specified as a function of the communication channel. This distance specifies r_c and r_{ch}
- Number (n) and type of sensors required for precise, lasting and economic data acquisition and delivery
- Inhibition parameter r_i , $r_i > r_c$ (areas of influence of H-sensors
- Intensity parameter a > 1
- L-Sensors around each H-Sensor: $E(Z) = \frac{n-m}{m\left(\frac{1}{a}\left(\frac{\mu(W)}{\mu(W')}-1\right)+1\right)}$

- ullet Window W where the process takes place
- Communication radii should be carefully specified as a function of the communication channel. This distance specifies r_c and r_{ch}
- Number (n) and type of sensors required for precise, lasting and economic data acquisition and delivery
- Inhibition parameter r_i , $r_i > r_c$ (areas of influence of H-sensors do not overlap) and $r_i < \ell/m^{1/2}$ (allows the placement of all the m H-sensors on the window $W=[0,\ell]^2$)
- Intensity parameter a > 1
- L-Sensors around each H-Sensor: $E(Z) = \frac{n-m}{m\left(\frac{1}{a}\left(\frac{\mu(W)}{\mu(W')}-1\right)+1\right)}$

- ullet Window W where the process takes place
- Communication radii should be carefully specified as a function of the communication channel. This distance specifies r_c and r_{ch}
- Number (n) and type of sensors required for precise, lasting and economic data acquisition and delivery
- Inhibition parameter r_i , $r_i \ge r_c$ (areas of influence of H-sensors do not overlap) and $r_i < \ell/m^{1/2}$ (allows the placement of all the m H-sensors on the window $W = [0, \ell]^2$)
- Intensity parameter a > 1
- L-Sensors around each H-Sensor: $E(Z) = \frac{n-m}{m\left(\frac{1}{a}\left(\frac{\mu(W)}{\mu(W')}-1\right)+1\right)}$

- ullet Window W where the process takes place
- Communication radii should be carefully specified as a function of the communication channel. This distance specifies r_c and r_{ch}
- Number (n) and type of sensors required for precise, lasting and economic data acquisition and delivery
- Inhibition parameter $r_i, r_i \geq r_c$ (areas of influence of H-sensors do not overlap) and $r_i < \ell/m^{1/2}$ (allows the placement of all the m H-sensors on the window $W = [0,\ell]^2$)
- Intensity parameter a > 1
- L-Sensors around each H-Sensor: $E(Z) = \frac{n-m}{m\left(\frac{1}{a}\left(\frac{\mu(W)}{\mu(W')}-1\right)+1\right)}$

Two outcomes of network graphs generated by the M²P² model

1000 nodes, 30 H-sensors, 1000×1000 sensor field, $r_c = 50$, $r_{ch} = 300$ and a = 5. E(Z) = 19.6 L-sensors.

- We showed a novel modeling solution able to represent a wide variety of WSNs scenarios
- The common random deployment is a particular case of our
- This model represents WSNs and HSNs showing characteristics
- We only need about 3% of H-sensors (50 out of 1500) to obtain
- We propose the Sink Betweenness, a metric suitable to
- This work suggests other possibilities, such as the use of the Sink

- We showed a novel modeling solution able to represent a wide variety of WSNs scenarios
- The common random deployment is a particular case of our model
- This model represents WSNs and HSNs showing characteristics
- We only need about 3% of H-sensors (50 out of 1500) to obtain
- We propose the Sink Betweenness, a metric suitable to
- This work suggests other possibilities, such as the use of the Sink

- We showed a novel modeling solution able to represent a wide variety of WSNs scenarios
- The common random deployment is a particular case of our model
- This model represents WSNs and HSNs showing characteristics of small world networks and can help to address the energy hole problem
- We only need about 3% of H-sensors (50 out of 1500) to obtain important features such as low average path length, and high cluster coefficient
- We propose the Sink Betweenness, a metric suitable to characterize the relay task of a node
- This work suggests other possibilities, such as the use of the Sink
 Betweenness in the design of HSNs and WSNs

 Sink

 COPPORT

 COPP

- We showed a novel modeling solution able to represent a wide variety of WSNs scenarios
- The common random deployment is a particular case of our model
- This model represents WSNs and HSNs showing characteristics of small world networks and can help to address the energy hole problem
- We only need about 3% of H-sensors (50 out of 1500) to obtain important features such as low average path length, and high cluster coefficient
- We propose the Sink Betweenness, a metric suitable to characterize the relay task of a node
- This work suggests other possibilities, such as the use of the Sink
 Betweenness in the design of HSNs and WSNs

 COPPORT

 C

- We showed a novel modeling solution able to represent a wide variety of WSNs scenarios
- The common random deployment is a particular case of our model
- This model represents WSNs and HSNs showing characteristics of small world networks and can help to address the energy hole problem
- We only need about 3% of H-sensors (50 out of 1500) to obtain important features such as low average path length, and high cluster coefficient
- We propose the Sink Betweenness, a metric suitable to characterize the relay task of a node
- This work suggests other possibilities, such as the use of the Sink

- We showed a novel modeling solution able to represent a wide variety of WSNs scenarios
- The common random deployment is a particular case of our model
- This model represents WSNs and HSNs showing characteristics of small world networks and can help to address the energy hole problem
- We only need about 3% of H-sensors (50 out of 1500) to obtain important features such as low average path length, and high cluster coefficient
- We propose the Sink Betweenness, a metric suitable to characterize the relay task of a node
- This work suggests other possibilities, such as the use of the Sink Betweenness in the design of HSNs and WSNs

Thank you!

